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A s m a l l - p a r a m e t e r  method in which the gas and e lec t ron  t e m p e r a t u r e s  can be different  is 
used to solve the Bol tzmann equation. The ze ro th -approx ima t ion  solutions a re  Maxwellian 
with different  t e m p e r a t u r e s  Te and T s. Trans i t ion  to the BGK f o r m a l i s m  on the bas i s  of an 
e x t r e m e l y  crude  es t ima te  of the frequency of e lec t ron  col l is ions leads to numer i ca l  r e su l t s  
which agree  well  with the avai lable  data.  Then an extension of the Eucken method leads to 
analytic exp re s s ions  for the nonequil ibr ium quas i -Loren t z  t r anspo r t  coeff ic ients .  

The Re l axa t i on -T i m e  P rob l em .  T r a n s p o r t  phenomena in ionized gases  a re  descr ibed  by finding a 
common s o l u t i o n  of the Bol tzmann equat ions  for  each component  of a mixture  of e lec t rons ,  ions,  and neutra l  
a toms .  In each of these  equations an in tegra l  t e r m  incorpora te s  col l is ions between par t i c les  of the same  
spec ies  while the other  t e r m s  are  not re la ted  to col l is ions .  Fo r  a nonequil ibr ium state  the veloci ty d i s t r i -  
butions a re  a s sumed  non-Maxwell ian;  the components  a re  assumed to have different  t e m p e r a t u r e s ;  the 
m a c r o s c o p i c  ve loci t ies  a re  assumed  different;  and gradients  a re  assumed  to exist .  

An ionized gas in any nonequi l ibr ium s ta te  tends toward equil ibrium; the p roce s s  can involve s ev e ra l  
s teps  with different  t ime sca les .  Grad [1] suggested that the l ighter  components  r e a c h  equi l ibr ium f i rs t ;  
then the heav ie r  components  r each  equil ibrium; and then all components  reach  equi l ibr ium With each other  
as a r e su l t  of col l is ions .  

This  suggest ion was ver i f ied  by Morse  [2], who studied re laxa t ion  in an inhomogeneous binary mix -  
ture  without g rad ien ts ,  with a smal l  diffusion Mach number .  Morse  introduced the se l f - r e l axa t ion  t imes  
~ee and TSS and calculated the c h a r a c t e r i s t i c  t imes  for exchange of kinetic energy (these t imes  are  denoted 
by a subsc r ip t  "E")  and for  momentum exchange ("M') :  TE(e) ,  rM(e) ,  TE(s) ,  and ~M(s). These  t imes  are  
re la ted .  Assuming  a Coulomb in terac t ion  and u s i n g a  = ne /n s ,  we find 

82 T e e  ov 8 T e e  cc 1 T e e  8 2  , T e e  T e e  8 2  . - -  - -  - -  cc _ c o _ _  - - _  oc 

~ss ~ ' T~(e) a ' T~(s) TE(e) C~ ' TZ(s ) (1) 

Johnson [3] recen t ly  proposed a s impl i f icat ion of the Bol tzmann equation based on the introduction of 
the p a r a m e t e r  e = (me/ms) l /2 ;  this  approach leads to the equations 

o:,  o L. + _ , .  
8 ~I,, + T.s = O, 

at Or 

I- W,. q'-T~ ~ 8-1T~ = O. 
Ot Or 

Here  the t e r m  desc r ib ing  col l is ions  between different  spec ies  is governed in o rde r  of magnitude by 
the d i f ference  between the t e m p e r a t u r e s  of the re laxa t ion  p r o c e s s e s ,  as in [2]. These  equations a re  valid 
for  desc r ib ing  t h e r m a l  p r o c e s s e s ,  but if diffusion must  be taken into account they must  be modified. In 
genera l ,  the t e r m  Tes ,  co r respond ing  to col l is ions between different  spec ies ,  has two re laxa t ion  t imes  
TE(e) and TM(e), which a re  quite different  in magnitude [see (1)]. Our purpose  below is to study t r anspo r t  
phenomena in a nonequi l ibr ium,  par t ia l ly  ionized gas in magnet ic  and e lec t r ic  fields.  
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I.  The S m a l l - P a r a m e t e r  Method. To i l lus t ra te  the use of this  method we cons ider  a b inary  mixture;  
in this case  we have the two equations 

O ~ --" O'fe e . . . .  Or -[ I [Ofe+Ce. Ore + ~ .  ( E + V X B + c e X B )  "-'e +Tee-~-Tes = 0 ,  (3) 
n, l o t  -- ~ Or me Oc~ J 

- -  _cs" - 'V '  + (E -}- V • B --~ ~- \" ff).-~c + T ~  -i- T,e : 0 .  
n~ &-r Or m, ' " "  

We expand the unknown dis tr ibut ion functions. 

L = ,~(F ~ + OPl + O~F~ + . . . ) ,  

L = n, (F~ ~ + OF] + 0"~ + . . . ) .  

where  0 is the smal l  p a r a m e t e r ,  defined below. We impose  the conditions 

where  

(4) 

(5) 

(6) 

(7) 

(he"', + ",'".) : "o"eL + ",". f , .  (S) 

IIe ll s 

f = np,  (lo) 

V m, (W~ - -  V) fe dsW~ = ,, ~ tn~ (We - -  V) [edaW ~ 2 ' 

which lead to 

)" f'e d~7~ = o, 

J w J, dJCe = ,~e (v~ ~), 

(12) 

(13) 

(14) y mo Ore - vl a t~ ~.~'e = o 

Accordingly,  the t he rm a l  re laxat ion  p r o c e s s e s  a re  descr ibed  by FOe and F ~ It should be noted that 
the .di f ference T e - - T s  is probably not s imply  a slight per turbat ion;  on the other  hand, the d i f fe rences  We 
--V)/(Ce> and W"*s--~)/(cs> are  sma l l  (according to the assumpt ion  of a smal l  diffusion Math number) .  

All the t e r m s  in Eqs .  (3) and (47 have cha rac t e r i s t i c  t imes ;  for each component  we have the r e l a x a -  
tion t imes  Tee and r s s ,  which govern energy and momentum exchange.  F o r  heavy components  the t imes  
rE(s )  and rM(s)  a re  st i l l  equal,  but for the e lec t rons  they are  v e r y  different:  

m e  T 
TM(e) Ins E(e) == #rE(e) (15) 

Dimensional  analys is  for each of the va r i ab l e s  leads to ~ 

t :x , ,e l t '  ' ce= /ce~t~ ,  cs= ~c~)%,  E * = ~ E - - V •  

II. The T i m e - D e r i v a t i v e  P rob lem.  The dis tr ibut ion functions a re  governed by the fields,  the m a c r o -  
scopic p rope r t i e s ,  and the i r  de r iva t ives .  We f i r s t  cons ider  the ease  in which there  a re  only t e m p e r a t u r e  
gradients .  Since the field continuously supplies  ener~r to the gas,  it cannot be in a s teady state.  The 
e lec t ron  and gas t e m p e r a t u r e s  i nc rea se ,  at r a t e s  descr ibed  by the t imes  rE(e)  and ~E(s) = TE(e)/a" Since 
rM(e) << r E  (e), we can a s sume  that ~e follows the t e m p e r a t u r e  changes;  i . e . ,  over  a t ime t << ~E(e) the 
sy s t em is  in a quas is teady s ta te ,  so that we have 

" F ~ OF~ \ 1 ( OF'd - - 0  (17)  1 Of~ ~ . . .  
n~ Ot --  xz(e) \ Ot' or' ")" 
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T A B L E  i 

Elec~rom Heavy component 

,--,1 
" - + 0  

aT eO -- ~e (% • ~) "-~e ~ 0 

"-~0 -'+0 
1 ~ OFe .-+ OFe 

~T L +T,, + ~ .  ~ - - ~ .  Oq~, 

- I~e (~• B ) . -  0 = 0 % 

0 n 0  --~1 ~--~0 "---~1 re - -~ OFe ..~ Ure ~-~ OFe 

- ~  +%' ~ U  +€ -g-~ -~" o~, 

- ~  OFT) , 2 e (30) 
-- ~e (% X B). ~ + T0s ~ aTee +Tes= 0 

J 
(28)] Ts~ = 0 

/ 
OF o _r --+o OFs --g= +%.~--p 

(29) 

"-~0 
OFs 

--~. ~ %  - -  

- -13 .  ( % x ) .  0% + 

0 __ + T~s + aTse -- 0 (31) 

Mult iplying the Bo l t zmann  equat ion by the c h a r a c t e r i s t i c  t ime  T, we find 

%~) \ ot + ot I Le Op - : -~~ 

+ ~ ~ Of Op tne ( c e> ~ 0% 0% J 

m e 0% 0% 

T(0) ~_5__TO) :~ ee @ O -~- 0 2 - ~ T  T(2) 
Tee Tee Tee 

. T --esT(0) '7 T 0 T ~ ) +  - T -n~T(2)-es = 0 ,  (18) 
TEie) TM(e) TM (e) 

An analogous  equat ion can be found for  the heavy componen t s .  H e r e  (Ce>r = Xe is the mean  f ree  path, eE* 
(ee) �9 = # e  field is the e n e r g y  which an e l e c t r o n  acqu i r e s  f r o m  the e l ec t r i c  field, me (ee)2 = 8e  kinet ic  is  
the a v e r a g e  kinet ic  energ~r of  an e l e c t r o n  at t e m p e r a t u r e  Te ,  and 

eB~ 
- -  = ~ e  ( 1 9 )  

m e 

is  the Hall  p a r a m e t e r .  T h e r e  a r e  ana logous  quant i t ies  for  the heavy componen t s .  

We now a s s u m e  T = rM(e) ,  f inding 

)~e Le 5~e field - " cc ~,, " cr 1, - - a  8, 
Le Le ~e kinetic 

(20)-(26) 

1~ e V 
l~e~I ,  ~ = - - ~ 1 ,  - - ~ : e ,  @ = e ,  

n, < ce > 

and we expand the t e r m s  in the two Bo l t zmann  equat ions  in powers  of  e; the r e s u l t s  a re  shown in Table  1. 

T h e r e  is no f i r s t - o r d e r  equat ion for  the heavy component ;  Eq.  (27) y i e lds  

-~  (,5-~ 
Fe [ 2-~-~-~ ] e 

(32) 

while Eq." (2.9) y i e ld s  

Fs0 = ( m, 13/~e 2kr~ 
2nkT s ] (33) 

Equat ion  (28) d e s c r i b e s  the heat  flux and e l e c t r i c  c u r r e n t  due to e l ec t ron  t r a n s p o r t ;  the h e a v y - c o m -  
ponent  cont r ibu t ion  can be neg lec ted  in the f i r s t  app rox ima t ion  (with a ~ 1). 
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"Fig. 1. Dependence of TE on. 
the ion charge with Z i = 1. 1) 
TE = 2/(2 +~-2) =0.58582 (accord- 
ing to the present paper); 2) 

TE = 0.5816 (according to the 
�9 data of [6]). 

Comment. The relaxation times calculated in [2] were based on 
the distribution functions fo e and fo written in the form 

tO:no( me. ~3/: e 2#a'o ( ms ~312 e : . r ,  ' \ 2nteTo / , fo = ns (34) 
~, 2nkT, ] 

However ,  in the case  of a smal l  diffusion Mach number ,  these func- 
tions can be reduced to 

( ~ )  ' m \'/' ,,r, 
f o  = no s e (35) 

Equation (28) can be solved by a method s im i l a r  to the Chapman 
- -Enskog  expansion in Sonin polynomials .  We will not take up this 

topic here .  We will  now use this t w o - t e m p e r a t u r e  f o r m a l i s m  in an a t tempt  to cons t ruc t  a model  equa-  
tion. 

III .  Construct ion of a Model Equation. The quanti t ies  Tloev and Ties in (28) a re  l inear  express ions ,  
We know of ce r ta in  eigenfunctions of the Lorentz  ope ra to r  whose eigenvalues  degenera te  to 

= - -  ~" (co) , (36) 

where  v is  the common frequency of d i rec t  e lec t ron  col l is ions.  In the Lorentz  case ,  a ~ 0. Analysis  of 
the coll is ion ope ra to r  shows that this equation takes  a fo rm cor respond ing  to that of the 13GK f o r m a l i s m  [4]. 
If  the in teract ion is Maxwellian, the col l is ion frequency becomes  constant .  

Unfortunately,  we know nothing about the eigenftmctions of the ope ra to r  Tie e. Let us a s sume  that C-'e 
is  an eigenfunction of Tlae; then the p rob lem reduces  to one of de te rmin ing  the col l is ion frequency.  We 
as sume  that the coll is ion f requencies  a re  as follows: 

(I) for electron-neutral collisions, 

(2) for e lec t ron- - ion  collisions, 

(3) for electron--electron collisions, 

ven = n~Qe"ce ; (37) 

Vei = thQ~ ; (38) 

Vee  = n~Q~g, (39) 

where  

= <,,t. 
We denote v(ll ) the frequency of Coulomb col l is ions of e lec t rons  cor responding  to Z i = 1. 

to [51, 

"Q~ -- l /2Qi l) .  

(40) 

According 

(41) 

Beplac ing  g by i ts  average  value,  vr2Ce, we find 

l / -~  v ( t ) .  
v~ = T " (42) 

The cor responding  model  equation is 

Of~ e -~1) ve" + l.' ,~ Z i  f~l) = 0. (43) 
Or m~ Oc e 

F r o m  the solution of this  model  equation we find the e l ec t r i ca l  conductivity in the nonequil ibrium 

_ 4he2 

a tf = 3kTe 
0 

.0[ 
Ce f e  Ven eL -i-  

-L vO) { Z ~. , Z i ~r e n ~ ei ~k L "7- 

~, p,o 
d c e  . 

state:  

4~e ~ (' 

~ - =  3kT~ J 
0 

(44) 

(45) 

644 



/ 
/0 r 

! / 
o,15 

3,,,t,1 
/ 

/ 

t 

7 9 fl r.t-a ~ 

Fig.  2. Tempera tu re  dependence of the sca lar  
e lec t r ica l  conductivity (at equilibrium) in argon 
at a tmospheric  p res su re .  1) Present  paper; 
2) [7]; 3) Lorentzian gas; 4) [6]. Here T is in 
Kelvin degrees .  

To check this model equation we turn to the available data. 

IIIa. Fully Ionized Gas at Equilibrium without a Magnetic Field. 
we introduce the ra t io  

for which we find 

Following Spitzer and Harm [6], 

non-Lorentzian electrical conductivity 

Lorcntzian electrical conductivity 

Z 2 I 2 i ~ Zt (46) 

The function TE = TE(Zi) is shown in Fig. 1. 

IIIb. Par t ia l ly  Ionized Gas at Equil ibrium without a Magnetic Field. To check the accuracy  of the 
method in a compar ison  with the data of Devoto [7] we adopted cer ta in  values for the e lec t ron--a tom c ros s  
sections.  Figure  2 shows the resul ts  for the case of argon at a tmospheric  p ressu re  in the equilibrium 
state. We see that the resu l t s  differ by no more than 15%. Above 6000~ our values are slightly higher 
than Devoto ' s ,  but the discrepancy is not a mat ter  for concern since the Chapman--Enskog method con- 
verges  ext remely  slowly at such low tempera tu res  (as Devoto pointed out). 

IIIc. Gas in a Magnetic Field. In the case of a fully ionized gas we find the resul ts  of [81; the resul ts  
for a part ial ly ionized gas are shown in Fig. 3s. 

Possible  Application of the Method for Heat Conduction. If we assume 

2 ce (47) 

1 to be an eigenfunction of the l inear opera tor  Tee,  we run into difficulty in the determination of the c o r r e -  
sponding coll ision frequency. If we assume (this assumption requi res  justification) 

/g : 0 ,  

with TT = 0.2252, as given in [6], we are  led to the ~hermal-conductivity curves  in Fig. 3b. 

Let us calculate the electronic thermal  conductivity in the presence  of a magnetic field~ in the case 
of an ionized gas we obviously find the resu l t s  of [9]. F igures  3c and 4 show curves  for argon at equili-  
b r ium at a tmospher ic  p ressure .  

IV. Quas i -Loren tz ian  Gas. Starting with Eq. (18), and following [10], we c a r r y  out an expansion 
in t e rms  of two pa r am e te r s :  

fe = fo - -  ~([~eo _:  afl~) - -  ...; ( 4 9 )  
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Fig.  3. a) Rat io  of  the para l l e l  e l ec t r i ca l  conductivity to the 
s ca l a r  e l ec t r i ca l  conductivity (curve 1 co r r e sponds  to full ioniza-  
t ion,  according  to Sodha and Varshui) ;  b) r a t io  of the d i rec t  t h e r -  
mal  conductivity (curve 1 co r r e sponds  to full ionization,  accord -  
ing to Landshoff); c) r a t io  of the t r a n s v e r s e  t h e r m a l  conductivity 
to the s ca l a r  t h e r m a l  conductivity (curve 1 co r r e sponds  to full- 
ionization, accord ing  to Landshoff), for  va r ious  values  of the 
Hall  p a r a m e t e r .  These  cu rves  a re  plotted for  argon at equi l i -  
b r i u m  at p = 1 a tm.  

set t ing e = a 2, we find 

F o r  the heavy component ,  

o: ! - %  (~  • ~). o ~  = o, (50) 
0% 

~: ~ TL = 0, (51) 
" - - ~ 0  " - - ~ n  

cr ~ T(I,o) * OF~ * OP~ "~-~l,o) O, (52) 

0-L. ,) 

~ T o = O. (54) $s  

Equation (50) contains an i so t ropic  solution, which is  found with the help of (51) to be Maxwellian. 
Solution (52) is  ident ical  to the c l a s s i ca l  Lorentz  solution. The next equation gives the n o n - L o r e n t z i a n  
solution, to which we how turn.  

Non-Lorentz ian  Solutions of the l~oltzmaun Equation. The convers ion  to a mul t icompoaent  sys t em,  
achieved by rep lac ing  Tes  by r .Tes ,  int roduces no new diff icult ies .  With the values  of the m a s s  ra t io  in 

s ~e 
mind ( m e / m s  ~ 70,000 for argon),  we can identify Ts  and T. Setting 

e(l,i) ~/*rS(lJ} 
(55) 
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Fig. 4. Temperature  dependence 
of the electronic thermal  conduc- 
tivity for argon at equilibrium at 
p = l  aim. 1) To ta IK [7]; 2) K e 
(the present  paper). Here T is 
in Kelvin degrees .  

5 7 .9 / /  r .fY ., 

where 

we find (i = 0, 1) 

--me(We--V)Z 

f*  = n~ 2zrkT . 

X T~.0 .= X J' S [* [~ ( ~ , , o  ~1,i,)gbdbdedsc ~ ~ L ( ~ '  .0). .(57) 
s~=e s ~ e  

It is shown in Appendix A that Eqs. (52) and (53) can be reduced to a Fredholm equation with a sym- 
metr ic  kernel ,  so that we can use the Fredholm theorem to check the integrabili ty.  The general  solution 
~o of the corresponding homogeneous equation is a constant (Appendix A). Consequently, a solution exists 
if  and only if the second te rms  in (52) and (53) are orthogonal with respect  to the constant.  

The solution ~ . 0 )  is the sum of the general  solution ~ ,  i) of the corresponding homogeneous equation 
and the part icular  solution ~e (1, i) of the inhomogeneous equation. 

Using conditions (7)-(14), we find the values of the a rb i t ra ry  parameters :  

,~1,0~ = O, ~ , ' )  = O. (58) 

We seek the par t icular  solution ~ (t, i) by the c lass ica l  approximations of direct  electron collisions: 

_~-~o, i _~ c~. (59) 

Accordingly, if h(ce) is any isotropie function of ~e, we have 

L [h (c~) c~] = - -  V (c~)~, (60) 

where V(Ce) = ~ Ves(Ce) is the c lass ica l  frequency of direct  electron collisions. The solution of Eq. (52) 

is the nonequilibrium Lorentv solution, which we write as 

[11,o, _ - / ~  ~ (~*. c5 t ~ ~.g*)~" 
,o~+~ ~ , o ~ + ,  ~ B =[~o + / ~ ,  (61) 

where G* is the c lass ica l  "driving force. " 

We assume 

- x  0 1.0 ' Tlp,0~0~ Tl0 ([~:e~;~) W~~ ([~[~111)-t'" "ell  , ~ v ,  ~ 2 _ =  ~ o 1o  , a,o o -v T(/~,/~l), (62) 

where the subscript  "1" r e fe r s  to the "field" electron. Then the non-Lorentzian solution can be written 

[~,~' = M ( G * c ~ ) +  N [  BXG* -+] 
B "Ce ' 

where M and N are isotropic functions. After determining these functions, we find 
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TA]3 LE 2 

@.o) + @., 
~E -- (~1,0) 

a~ t'~ + r 

o~i 1.0) 

~e {1,0) 

k, c',~ + k~'.') 
Yr = k~t,o) 

i = Tg) 

0,612 

0,249 

0,476 

0,2765 

:Acc. Spitzer and Harm 

Zi= 1 - 

0,5816 

0,2727 

0,4652 

0,2252 

v2 '-----~ -}- ~ (B x "G*). RiB " "~ -r- r (G* ,ce) (63) 

F r o m  this solution we can determine the analyt ic .expressions for the nonequilibrium non-Lorentz isn  t r ans -  
port  coefficients.  If there is no magnetic field, ]3 = 0, setting 

0 ,  ' W  * n~l* (A) = T  (f, f,,Ax) w q, A~I) 

and 

we find 

= - -  ~ .(64) 

= __ ~ flo,o (65) 
"2kTe 2 ' 

2 
B(l,l) = - -  t~eme ~ ,0 ,  (66)  
re 6 

W .2kr  T �9 (67) 

In this nonequilibrium case  we must introduce a res t r i c t ion  which follows from the nonequilibrinm 
Debye length (Appendix ]3): 

d, = ( 2kkoT, T ),/2 
n,e ~" (7" e + T) " (68) 

Integrals  like those in Eq. (63) are  not amenable to numer ica l  calculations; the calculations can prob-  
ably be ca r r i ed  out by the Monte Carlo method. Calculations were ca r r i ed  out in [11] for the ease in which 
v is some polynomial expansion in the electron velocity ee. The present  data r e f e r  to the case of a purely 
Coulomb interaction,  so that they can be compared with the data of [6] (Table 2). The discrepancy here 
is to be expected, since a fully ionized gas is not a quas i -Loren tz ian  gas. In the case of s Maxwell in- 
teract ion (v = const),  the quantity ~le'l vanishes.  

V. General Conclusions. Working from the resu l t s  of [2], which dealt with the relaxation t imes in 
an inhomogeneous gas with a sfiaall Mach number ,  we have developed a smal l  p a r a m e t e r  method for solv-  
ing the ]3oltzmann equation. This method can be used if the electron and gas t empera tures  are different. 
This method is an extension of the Chapman--Enskog method for the small  parameter  e = (me/ms) 1/2. As 
was shown in [2], the t e rm descr ibing the coll isions between e lect rons  and other  species  has two related 
charac te r i s t i c  t imes,  ~E(e) and ~M(e), which are very  different in magnitude and re fe r  to energy and mo-  
mentum, exchange, respect ively .  

The unknown distribution functions are expanded in ser ies ;  the ze ro th -o rde r  t e rms  take into account 
the difference between the relaxation tempera ture ,  while the other  t e rms  take into account momentum 
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exchange.  A method of success ive  approx imat ions  has been worked out in which the z e r o t h - o r d e r  t e r m s  
fo e(ne, Te,  V--) and ~ yield the Maxwell solution. This  solution co r r e sponds  to the re laxat ion  t imes  given 

in [21. 

The nonequi l ibr ium t r a n s p o r t  coeff ic ients  a re  calculated by the Chapman- -Enskog  procedure ,  except 
that the t e m p e r a t u r e s  T e and Ts  a re  different .  A magnet ic  field in t roduces  no new diff icult ies.  

We at tempted to find analytic r e s u l t s  by two methods;  f i r s t ,  we t r a n s f o r m e d  the l inear ized equation 
into a genera l ized  BGK equation on the ba s i s  of a c rude  es t imate  of the eigenvalue.  This  approach yielded 
n u m e r i c a l  r e su l t s  in good ag reemen t  with r e su l t s  f rom the l i t e ra tu re  [6, 9]. 

Second, following Eucken,  we introduced a sma l l  p a r a m e t e r ,  the degree  of ionization a = ne /n  s, so 
that  this s y s t e m  of equations is valid for  the case  of a quas i -Lo ren t z i an  gas.  The z e r o t h - o r d e r  solution is 
s t i l l  Maxwellian,  while the f i r s t - o r d e r  solution co r r e sponds  to the Lorentz  solution (with T e ~ Ts) ,  and 
the t h i r d - o r d e r  solution gives the non-Loren tz ian  co r rec t ion  to the t r anspo r t  coeff ic ients ,  which are  ca l -  
culated analyt ical ly  as Chapman--Cowling in tegra ls .  The numer i ca l  r e su l t s  found for  a fully ionized gas 
agree  well  with those obtained in [6], although in this pa r t i cu l a r  case  the mixture  is  quite different  f rom the 
Lorentz  model .  

A P P E N D I X  A 

We cons ider  the l inear  ope ra to r  

L (~) : ~S t* t o (~ - . ' )  koAk4c. 

We can show that  this  is  a F redho lm ope ra to r  with a s y m m e t r i c  kernel .  

f j' t:  t ~  : k,, (;~) . .  
Let us examine the in tegra l  

z = j'j' t: r~ 

We assume  an e las t ic  col l is ion in veloci ty  space  (Fig. A.1): 

Fol lowing Chapman and Cowling [13], we introduce the new v a r i a b l e s  

k =gk, g =gn. 

We find 

dsk=g2dgd=k, 

dag=g~dgddt 

Here  c--~ must  be t rea ted  as a fixed quantity; then 

dac s =dsg 

and thus 

In t roducing the new var iab le  

we have 

On the o ther  hand, 

and 

: J'S r : / ~ , , ' <  ~g, , )a . j ,a .k .  

.~ = (~ .-~)k = g ~os,k = c o s , - i  

dak ::- cos a ~dak. 

~, ~ ,  2m. ( - ~  
Cc ~ C e  T 

In e - ~  Ill s 

�9 C O S  

- - ,  ,~  ct.,,d~c; 
/ c o s ~  ' 

F i r s t ,  we wri te  

(A.I 

CA.2) 

(A.3) 

(A.4) 

(A.5) 

(a.6) 

(a.7) 

(A.S) 

(A.9) 

(A.10) 

(A.n) 

(AA2) 

(.4.13) 
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P 

Fig. A.1 Fig. A.2 

where K = [C~e--~ e [ /2ms is symmet r ic  with respec t  to ~e and ~e" Then the kernel  is 

= . I~ ~s , .. cos3------ ~ (A.14) 

In this in tegral  ~e and ~e must  be t rea ted  as fixed. We consider  the plane formed by the two vec tors  c(~ e 
--c~ e) and n; it is governed by the angle/3 (Fig. A.2). Since 

d,,n -- sin ~;dC, dfJ, (A.15) 

then 

0 
2 ~  

For A to be symmetric, the quantity I ~ f~162 must be symmetric with respect to c~ e, ~e ). Following 
o 

Kog~n [12], we wri te  
f .  [~ = ~f ,  f , ,~/2(f 'o ~,0~,/~ (A 1'7) . . . .  , , , , ~ , ~ ,  �9 . . . _ _ .  

We assume 

Ce-rC, (A.18) 

2 

If~ is  the unit vector  shown in Fig.  A.1, then we have 

2~ 2(me-i-m s) 

.i" (~ kT 

0 

We write  

- - v t g r  d~. (A.20) 

2 T2 where cos 8 = Ce--C e / F 7  {asymmetric) .  
only odd powers of sin 0 make nonvanishing contributions.  

Accordingly,  the integral  and the kernel  a re  symmet r i c .  

In conclusion we can wri te  

S S f* ~ {~-dp')k'.dskd~.=Ko(;)qS+ S KI~" c:)~'d.c;. (A.22) 

This equation and Eqs.  {52) and (53) of the text p roper  are  Fredholm equations with symmet r i c  kernels .  

Considering the homogeneous equation 

0 r S S f* Is (CP-~)kesd2kd3c'=O' (A.23) 

r .  ~_- r cos ~ sin 0, (A.21) 

If we wri te  the exponential function in se r i e s  form,  we see that 
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we find 

;;S " 1 [ .  fo (~ _ (p) kefl,kd3cfl,cc ' 
2 

Solution (A.21) sat isf ies  the condition ~ = q~. 
= const. 

(A.24) 

Then for binary electron coll isions the only solution is 
Now we can easily verify that the Fredholm integrability condition holds for Eqs.  (52) and (53). 

A P P E N D I X  B 

We donote by @ the e lectr ic  potential of the electrons and ions; then the Poisson equation is 

T Pi _ 0 ,  Aq)+ Pe ' 
4nko (B.Z) 

We replace the distribution functions by the following Maxwell functions: 

, e .  ~ ( B . 2 )  
fo = n [ m~ ~3/2 e -2~-+-Z~ 
e ~o~ 2nkr~ j 

fo = n, io \ 2nkTi ] e 

Then we find 

n e -- t40 ee~/k7~ , (B.4) 

ni : n~o e-z~er (B. 5) 

Substituting these equations into the Poisson equation, written in t e rms  of spherical  coordinates ,  and lin- 
ear iz ing the exponential functions, we find 

1 0 

r 2 Or 

whose solution is 

~p --ap ~e -~ 1-~zi r/d, 

Hence the Debye length in the nonequilibrium case is 

d' = ( kk~ (1 ~- Zi) TeT i 
he0 e~ (ZTe + Ti) 

- -  - -  (r 20 fp )  e"nc~ o ( Z-~ ~ ) 
~/~ -: kk ~ , -}- ' (B.6) 

(B.7) 

i,,'2. (B.8) 

re. fs 
Fe.  Fs 
We, Ws 
r = (x, y,  z) 
Y/~r 
F/On 
me, ms 
n i, n n, tl e , n s 
V 
Ve, Vs 
T 
T e , ~  _~ 
Ce = We--V 
(Ce) ,~ (Cs) 
e 
eZi 

Tee, Tss 

N O T A T I O N  

are the distribution functions; 
are  the dimensionless  distribution functions; 
are  the absolute velocit ies;  
is the radius vector  in coordinate space; 
is the gradient opera tor  in coordinate space; 
is the gradient opera tor  i n velocity space; 
are  the masses ;  
are the densit ies;  
is the macroscopic  velocity of mixture;  
are  the macroscopic  velocit ies for the components of the mixture; 
is the mixture tempera ture ;  
are  the component t empera tu res ;  
are  the diffusion velocit ies;  
are  the average diffusion velocit ies;  
is the e lectron charge;  
is the ion charge~ 
are  the e lectr ic  and magnetic fields; 
are  the integrals  for elast ic coll isions between par t ic les  of the same species;  
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Tes, Tse 

Tee, Tss 
TE(e), ~r E(s) 

TM(e), ~'M(S) 2 
= (me~ms)t~ 

(~ = ne/n s 

q'e, q's 

T 

Xe 
e field 
e kinetic 

O9 

~e 
Yes 

Qen, Qei, Qee 

G.L 

Ge, ae, fie, Ke 
d' 

are the integrals for elastic collisions between particles of different species; 
are the self-relaxation times; 
are the thermal relaxation times; 
are the relaxation times for momentum exchange; 
is the small parameter; 
is the degree of ionization; 
are the dimensionless velocities; 
are the dimensionless quantities; 
is the characteristic time; 
is the electron mean free path; 
is the energy acquired by an electron from the field; 
is the average kinetic energy of an electron at temperature Te; 
is the electron gyrofrequency; 
is the Hall parameter; 
is the frequency of collisions between electrons and particles of species s; 

is the total frequency of collisions between electrons and heavy particles; 

are the cross sections for electron--atom, electron--ion, and electron--electron inter- 
actions; 

is the relative velocity; 
is the parallel (or "ordinary") electrical conductivity; 
is the normal (or transverse) electrical conductivity; 

non- Lorentzian electrical conductivity 
~]E = Lorentzian'ei~cttical conductivity ' 

non-Lorcntzian thermal conductivity 
"~'T . . . .  borcntzian thermal eonductiv{ty ; 

are the transport coefficients; 
is the nonequilibrium Debye length; 
is the scattering angle. 
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