TRANSPORT PHENOMENA IN A NONEQUILIBRIUM,
PARTIALLY IONIZED GAS IN A MAGNETIC FIELD

Jean-Pierre Petit and Michel Larini UDC 533.932

A small-parameter method in which the gas and electron temperatures can be different is
used to solve the Boltzmann equation. The zeroth-approximation solutions are Maxwellian
with different temperatures Te and Tg., Transition to the BGK formalism on the basis of an
extremely crude estimate of the frequency of electron collisions leads to numerical results
which agree well with the available data. Then an extension of the Eucken method leads to
analytic expressions for the nonequilibrium quasi-Lorentz transport coefficients,

The Relaxation-Time Problem. Transport phenomena in ionized gases are described by finding a
common solution of the Boltzmann equations for each component of a mixture of electrons, ions, and neutral
atoms. In each of these equations an integral term incorporates collisions between particles of the same
species while the other terms are not related to collisions. For a nonequilibrium state the velocity distri-
butions are assumed non-Maxwellian; the components are assumed to have different temperatures; the
macroscopic velocities are assumed different; and gradients are assumed to exist.

An jonized gas in any nonequilibrium state tends toward equilibrium; the process can involve several
steps with different time scales. Grad [1] suggested that the lighter components reach equilibrium first;
then the heavier components reach equilibrium; and then all components reach equilibrium with each other
as a result of collisions. '

This suggestion was verified by Morse [2], who studied relaxation in an inhomogeneous binary mix-
ture without gradients, with a small diffusion Mach number, Morse introduced the self-relaxation times
Tee 8nd Tgg and ealculated the characteristic times for exchange of kinetic energy (these times are denoted
by a subscript "E") and for momentum exchange ("M"): TE(e), TM(e): T E(s). 2nd TM(s). These times are
related. Assuming a Coulomb interaction and using a = neg/ng, we find
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Johnson [3] recently proposed a simplification of the Boltzmann equation based on the introduction of
the parameter ¢ = (me/ms)i/ 2 this approach leads to the equations
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Here the term describing collisions between different species is governed in order of magnitude by
the difference between the temperatures of the relaxation processes, as in [2]. These equations are valid
for describing thermal processes, but if diffusion must be taken into account they must be modified. In
general, the term Teg, corresponding to collisions between different species, has two relaxation times
TE(e) and Tp[(e), Which are quite different in magnitude {see (1)]. Cur purpose below is to study transport
phenomena in a nonequilibrium, partially ionized gas in magnetic and electric fields.
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1. The Small-Parameter Method. To illustrate the use of this method we consider a binary mixture;
in this case we have the two equations :
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We expand the unknown distribution functions:
f,=n,(Fo — OF, - 6*F2 = .. ), (8)
f, =ng(Fs — OFs - @2FF — .., (6)
where 6 is the small parameter, defined below. We impose the conditions
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Accordingly, the thermal relaxation processes are described by FQ and F§. It should be noted that
the difference Te—Ts is probably not simply a slight perturbation; on the other hand the differences (Ve
—V)/{ce) and (Tg—V )/{cg) are small (according to the assumption of a small diffusion Mach number),

All the terms in Eqs. (3) and (4) have characteristic times; for each component we have the relaxa-
tion times 7o and Tgg, Which govern energy and momentum exchange. For heavy components the times
TE(s) and 7j(g) are still equal, but for the electrons they are very different:
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Dimensional analysis for each of_,the vamables»leads to e .
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E—EL V=Vo, B=Bp r=Lyp 16)
II. The Time-Derivative Problem. The distribution functions are governed by the fields, the macro-
scopic properties, and their derivatives., We first consider the case in which there are only temperature
gradients. Since the field continuously supplies energy to the gas, it cannot be in a steady state. The
electron and gas temperatures mcrease at rates described by the times Tg(e) and Tg(g) = TE(e)/¢. Since
TM(e) € TE(e)» We can assume that Ve follows the temperature changes; i.e., over a time t < TE(e) the
system is in a quasisteady state, so that we have
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TABLE 1
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Multiplying the Boltzmann equation by the characteristic time 7, we find
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An analogous equation can be found for the heavy components, Here {ce)T = Ag is the mean free path, eE*
{ce) T = £ e field is the energy which an electron acquires from the electric field, me {(ce) 2= gekinetic i8

the average kinetic energy of an electron at temperature Te, and

eBt
m P (19)

is the Hall parameter. There are analogous quantities for the heavy components.

We now assume T = T)(e), finding

e op Lo, LBema o (20)-(26)
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and we expand the terms in the two Boltzmann equations in powers of ; the results are shown in Table 1,

There is no first-order equation for the heavy component; Eq. (27) yields

e
—, (R’/e—V)L

o ( M, )3/2 e %D (32
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while Eq. (29) yields _
. m, e — mg (;:;—V)z
[ ( 2nkTs ) e * (33)

Equation (28) describes the heat flux and electric current due to electron transport; the heavy-com-
ponent contribution can be neglected in the first approximation (witha ~1).
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% Comment, The relaxation times calculated in [2] were based on
10 - the distribution functions f° and f° written in the form

AN
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Fig. 1. Dependence of YE on However, in the case of a small diffusion Mach number, these func-
the ion charge with Zj =1, 1) tions can be reduced to
YE =2/(2+V/2)=0,58582 (accord- m W~V g (W1
ing to the present paper); 2) 0 m, YRTTm, T o, my \¥2 T mr,
Yg = 0.5816 (according to the fe=n onkT ¢  fo= n“( onkT ) ¢ - (35)

data of [6]). Equation (28) can be solved by a method similar to the Chapman

—Enskog expansion in Sonin polynomials. We will not take up this
topic here. We will now use this two-temperature formalism in an attempt to construct a model equa-
tion,

III. Construction of a Model Equation. The quantities T* ee 2nd Tgs in (28) are linear expressions.

We know of certain eigenfunctions of the Lorentz operator whose eigenvalues degenerate to
A= —-'\'(Ce), (36)_

where v is the common frequency of direct electron collisions. In the Lorentz case, @ ~ 0, Analysis of
the collision operator shows that this equation takes a form corresponding to that of the BGK formalism [4].
If the interaction is Maxwellian, the collision frequency becomes constant.

Unfortunately, we know nothing about the eigenfunctions of the operator T Let us assume that Ce
is an eigenfunction of T}ae' then the problem reduces to one of determining the colhsmn frequency. We
assume that the collision frequencies are as follows:

(1) for electron-neutral collisions,

(2) for electron—ion collisions, Ven = MnQenCe (37)
. Vi = n,iQeice; (38)
(3) for electron—electron collisions,
\ Veo == M,Quc8s (39)
where L.
=, — Ceil, (40)

We denote Vgi) the frequency of Coulomb collisions of electrons corresponding to Z; = 1. According
to [5],

Qee = 1/2Q1). (41)
Replacing g by its average value, v2¢co, we find
SN
\,83 = 12 \/g). (42)
The corresponding model equation is
- 0 - E 3 ! 2 ]v'/r_g. . _
Ce' f - (E* ““’C /<B) f s lven + Vg%) (Zl, e ———«-2 ZE)J fg,l) = 0. (43)
or c,
From the solution of this model equation we find the electrical conductivity in the nonequilibrium
state:
dnet o CLI [ Vep + ¥ (Z% e _]:_5_ Zi\)] de,
"] et
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_ dne? f ‘ cflo dc
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v Fig. 2. Temperature dependence of the scalar

electrical conductivity (at equilibrium) in argon
at atmospheric pressure. 1) Present paper;

2) [7]; 3) Lorentzian gas; 4) [6]. Here T is in
Kelvin degrees.

0',5 7 9 ” i
To check this model equation we turn to the available data,

IIla, Fully Ionized Gas at Equilibrium without a Magnetic Field, Following Spitzer and Harm [6],
we introduce the ratio

v, = non-Lorentzian electrical conductivity
£ =

Lorentzian electrical conductivity

for which we find

n+12 7z (46)

The function YR = YE(Z{) is shown in Fig. 1.

IIb. Partially lonized Gas at Equilibrium without a Magnetic Field. To check the accuracy of the
method in a comparison with the data of Devoto [7] we adopted certain values for the electron—atom cross
sections. Figure 2 shows the results for the case of argon at atmospheric pressure in the equilibrium
state. We see that the results differ by no more than 15%. Above 6000°K our values are slightly higher
than Devoto's, but the discrepancy is not a matter for concern since the Chapman—Enskog method con-
verges extremely slowly at such low temperatures (as Devoto pointed out).

Ille. Gas in a Magnetic Field. In the case of a fully ionized gas we find the results of [8]; the results
for a partially ionized gas are shown in Fig. 3a.

Possible Application of the Method for Heat Conduction. If we assume

" Myt *5_)7
(ﬁ 7 ) @7

to be an eigenfunction of the linear operator Tée, we run into difficulty in the determination of the corre-
sponding collision frequency. If we assume (this assumption requires justification)

dfe 0, \ ’\,PI'
(%) + [ 3] o= (48)

with yT = 0.2252, as given in [6], we are led to the thermal-conductivity curves in Fig, 3b.

Let us calculate the electronic thermal conductivity in the presence of a magnetic field; in the case
of an ionized gas we obviously find the results of [9]. Figures 3c and 4 show curves for argon at equili-
brium at atmospheric pressure.

IV. Quasi-Iorentzian Gas.  Starting with Eq. (18), and following {10], we carry out an expansion
in terms of two parameters:

fo= I (0= afth = (49)
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Fig. 3. a) Ratio of the parallel electrical conductivity to the
scalar electrical conductivity (curve 1 corresponds to full joniza-
tion, according to Sodha and Varshni); b) ratio of the direct ther-
mal conductivity (curve 1 corresponds to full ionization, accord-
ing to Landshoff); c) ratio of the transverse thermal conductivity
to the scalar thermal conductivity (curve 1 corresponds to full:
ionization, according to Landshoff), for various values of the
Hall parameter. These curves are plotted for argon at equili-
brium at p =1 atm,

setting £ =a?, we find

~ 3R

«] —a, (q;: X ) - 0, (50)
g,
« o T, — , (51)
-5 5;‘0 B o 6770 — - 5‘;‘;"0)

ca?  THY 4t B(g, xB)- =0, (52)

ap o, 0,

- ~ —*(l’l)
wab YO TN — B, @, BT — =0, (53
For the heavy component, '

o 0&2 Tgs = U, (54)

Equation (50) contains an isotropic solution, which is found with the help of (51) to be Maxwellian,
Solution (52) is identical to the classical Lorentz solution. The next equation gives the non-Lorentzian
solution, to which we how turn,

Non-Lorentzian Solutions of the Bolizmann Equation, The conversion to a multicomponent system,
achieved by replacing Teg by ETes, introduces no new difficulties. With the values of the mass ratio in
8 #e

mind (mg/mg ~ 70,000 for argon), we can identify Tg and T. Setting

[0 = [ (55
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fad

Fig. 4. Temperature dependence
of the electronic thermal conduc-
tivity for argon at equilibrium at

sl p=1atm. 1) Total K [7]; 2) K¢
L (the present paper), Here T is
in Kelvin degrees.
L
7y 7 9 7 150

where

—m W, —V)*
3/2
f¥=n, LT . , (56)
2nkT
we find (i =0, 1)
DT80 =3 [ [ [ (@l — D) gbdbdedye, = L (@4"7). (57)

s#e S#e

It is shown in Appendix A that Eqs. (52) and (53) can be reduced to a Fredholm equation with a sym-
metric kernel, so that we can use the Fredholm theorem to check the integrability. The general solution
¢ of the corresponding homogeneous equation is a constant (Appendix A), Consequently, a solution exists
if and only if the second terms in (52) and (53) are orthogonal with respect to the constant.

The solution @%‘0) is the sum of the general solution <p(é’ i

A of the corresponding homogeneous equation
and the particular solution wél’ 1) of the inhomogeneous equation,

Using conditions (7)-(14), we find the values of the arbitrary parameters;

@0 =0, ¢l-h = 0. (58)
We seek the particular solution ¥ @, 1) by the classical approximations of direct electron collisions:
g~c, ch c,. (59)

Accordingly, if h(ce) is any isotropic function of €z, we have

Lli(e)c] =—v (), (60)

e

where v(cg) = 2 veslce) is the classical frequency of direct electron collisions. The solution of Eq. (52)

s#e
is the nonequilibrium Lorentz solution, which we write as
_Rv@ e B.gy

1.0y _ fev(G*c) ¢ B-GY¢

f = ©° - v? @t--v: B S+ R (61)
where G* is the classical "driving force. "

We assume

Tiy = (2 FP) + TR 1), T, =v (0 f18) + T(2 f2), (62)

where the subscript "1" refers fo the "field" electron. Then the non-ILorentzian solution can be written
— —->* -
fi0 =M @e) + N [ 28 c}

where M and N are isofropic functions. After determining these functions, we find
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TABLE 2

Present paper (B=. 0, Té Acc. Spitzer and Harm
- Tg) _EHE
M0 4 LY
o, o
T =g — 0,612 05816
(L0 4 (LY
Ot (-li-o':‘e 0,249 0,2727
all
(1,0) 4 p(LD)
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From this golution we can determine the analytxc expressions for the nonequilibrium non-Lorentzian trans-
port coefficients. If there is no magnetic field, B= 0, setting

n2I* (A) =T (70 fAA) +T (FFAR)

and
= e e]*(c:ce)d3c =Qm.n
v v e 1]
we find
262
o ==z, 2 64)
nm 5
- _ ¢ e ooz 2 o0
e 5 [QkT 2 ] (65)
B = — i Q2.0 (66)
¢ 6
mn2 m 5
) — __ _Cel e Qa2 = Q0|
K 6T, [_2kTe 2 @ ] (67)

In this nonequilibrium case we must introduce a restriction which follows from the nonequilibrium
Debye length (Appendix B):

g = (_Ek_kgT_eT__)‘”,

ne* (T, +T) (68)

Integrals like those in Eq. (63) are not amenable to numerical calculations; the calculations can prob-
ably be carried out by the Monte Carlo method. Calculations were carried out in [11] for the case in which
v is some polynomial expansion in the electron velocity ce. The present data refer to the case of a purely
Coulomb interaction, so that they can be compared with the data of [6] (Table 2). The discrepancy here
is to be expected, since a fully ionized gas is not a quasi-Lorentzian gas. In the case of a Maxwell in-
teraction (v = const), the quantity o':! vanishes.

V. General Conclusions. Working from the results of [2], which dealt with the relaxation times in
an inhomogeneous gas with a2 small Mach number, we have developed a small parameter method for solv-
ing the Boltzmann equation. This method can be used if the electron and gas temperatures are different.
This method is an extension of the Chapman—Enskog method for the small parameter € = (me/mg)/%, As
was shown in [2], the term describing the collisions between electrons and other species has two related
characteristic times, TE(e) and T)j(¢), Which are very different in magnitude and refer to energy and mo-
mentum. exchange, respectively.

The unknown distribution functions are expanded in series; the zeroth-order terms take into account
the difference between the relaxation temperature, while the other terms take into account momentum



exchange. A method of successive approximations has been worked out in which the zeroth-order terms
il (e, Te, V) and f° yield the Maxwell solution. This solution corresponds to the relaxation times given

m [2].

The nonequilibrium transport coefficients are calculated by the Chapman—Enskog procedure, except
that the temperatures T, and Tg are different. A magnetic field introduces no new difficulties.

We attempted to find analytic results by two methods; first, we transformed the linearized equation
into a generalized BGK equation on the basis of a crude estimate of the eigenvalue. This approach yielded
numerical results in good agreement with results from the literature [6, 9].

Second, following Eucken, we introduced a small parameter, the degree of ionization @ = ng/ng, so
that this system of equations is valid for the case of a quasi- Lorentzian gas. The zeroth-order solution is
still Maxwellian, while the first-order solution corresponds to the Lorentz solution (with Te = Tg), and
the third-order solution gives the non-Lorentzian correction to the transport coefficients, which are cal-
culated analytically as Chapman—Cowling integrals. The numerical results found for a fully ionized gas
agree well with those obtained in [6], although in this particular case the mixture is quite different from the
Lorentz model,

APPENDIX A

We consider the linear operator

Lig)= || T3 (@— ) ko, A1
We can show that this is a Fredholm operator with a symmetric kernel, First, we write
V{ 1% ok, d kdg, = by () O. (A.2)
Let us examine the integral
1= {{ [ Pk, dkdg, A.3)
We assume an elastic collision in velocity space (Fig. A.l):
g=0,—C,. (A.4)

Following Chapman and Cowling [13], we introduce the new variables

=gk, g =gn. (4.5)
We find
dyk = gdgd k, (A.6)
dyg = gdgd,n, (A7)
Here Ce must be treated as a fixed quantity; then
Gt = (4.8)
and thus
=] 1e POk g, p) dyudg (.9
Introducing the new variable
K= (g - Tk= g cospk —cos V&, (A.10)
we have
dsk = cos®ypd k. (A.11)
On the other hand,
& =ty mQ_msﬂ , (g-kk (A.12)
and
e ffren (G5 )y i
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where K = IQ—E}I /2mg is symmetric with respect to ?e and E’é. Then the kernel is

A= 5 f* gkes( K q:) L ap, (A.14)

cos P cosd ¢
In this intggral ce and "é'é must be treated as fixed. We consider the plane formed by the two vectors (ce
—c},) and n; it is governed by the angle g (Fig. A.2). Since

dyr == sin Ydydp, (A.15)
then
Kl
A = L (K o) sinpay { 7+ foap
’ cos3y  \cosy’ ‘s e [s7F (A.16)
25 v ,
For A to be symmetric, the quantity | fa fgdﬁ must be symmetric with respect to (€, c}). Following
0
Kogan [12], we write
FF B = (F* F¥)VHR POy, (A.17)
We assume
F_ Gt 2 (A.18)
2 t]
> = =t , (A.19)
Y ) .
1f -B‘is the unit vector shown in Fig. A.l, then we have
o2n 2{m,+my) —yp
[ o e g (A.20)
i
We write
f-g:l‘cosﬁsine, (A.Zl)

where cosf = cze—c'z/ I'y (asymmetric), If we write the exponential function in series form, we see that
only odd powers of sind make nonvanishing contributions,

Accordingly, the integral and the kernel are symmetric.
In conclusion we can write . . )
§§ 1 R@— o) kdkde, =K, @) @+ | Ko 0) Pdye;. (A.22)
This equation and Eqs. (52) and (53) of the text proper are Fredholm equations with symmetric kernels,

Considering the homogeneous equation

U§ 1% P @—9") kodikdic, = 0, (A.23)
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we find

Solution (A.21) satisfies the condition ¢ = ¢!, Then for binary electron collisions the only solution is ¢

j 9 f j £ 12 (0 — @) hugdobdycydic,

= ";_ f \S‘ j fg* f(s) ((P - ¢,)2kesd2kd3csdace'

(A.24)

= const. Now we can easily verify that the Fredholm integrability condition holds for Eqs. (52) and (53),

We donote by ¢ the electric potential of the electrons and ions; then the Poisson equation is

APPENDIX B

A(D—:— Pe _I_.pi —
4nk,

We replace the distribution functions by the following Maxwell functions:

Then we find

Ml ; ed
,
m 3/2 [_2” T
0 e
2=t ) et e,

2nRT,
( [ M e ]
7 =n m; 3/26_—2k7‘i TR
; = Mg
’ 2nkT,
ed/kT,
N, == Mge ¢,
—Z;e®/kT;

1= N;,€

B.1)

B.2)

(B.3)

B.4)
(B.5)

Substituting these equations into the Poisson equation, written in terms of spherical coordinates, and lin-
earizing the exponential functions, we find

whose solution is

LS (e gL, L),
ar kR, \T, T,

0

—Vi+Z; r/d’
O =P o' HE

Hence the Debye length in the nonequilibrium case is

Me, Mg
I_l_i., 0p, e, Ng

Ve: {;S

T

Ee, ’]_:‘_g —
Ce = We—v
<Ce>w (Cs>

e

eZj

E, B
Tee, Tgs

o [ Rk Z)T,T, ra
71-5062 (ZiTe -+ Tl)

NOTATION

are the distribution functions;

are the dimensionless distribution functions;

are the absolute velocities;

is the radius vector in coordinate space;

is the gradient operator in coordinate space;

is the gradient operator in velocity space;

are the masses;

are the densities;

is the macroscopic velocity of mixture;

are the macroscopic velocities for the components of the mixture;
is the mixture temperature;

are the component temperatures;

are the diffusion velocities;

are the average diffusion velocities;

is the electron charge;

is the ion charge;

are the electric and magnetic fields;

are the integrals for elastic collisions between particles of the same species;

(B.6)

B.7)

(B.8)
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Tes» Tse
Teer Tss
TE(e)s TE(s)
TM(e)s TM(s)
g = ('me/'ms)i/2
@ = hg/ng
_@.e’ 'E’.S__

—_— —_—

, Vv, B, p

=y v

Ae

& e field

¢ e kinetic
w

Be

Ves

2
v = Ves

s*e

Qen: Qeis Qee

g = Ce—Cet
ol
[N

Oy Qg, Be, Ke
d'
X

are the integrals for elastic collisions between particles of different species;
are the self-relaxation times;

are the thermal relaxation times;

are the relaxation times for momentum exchange;

is the small parameter;

is the degree of ionization;

are the dimensionless velocities;

are the dimensionless quantities;

is the characteristic time;

is the electron mean free path;

is the energy acquired by an electron from the field;

is the average kinetic energy of an electron at temperature Tg;

is the electron gyrofrequency;

is the Hall parameter;

is the frequency of collisions between electrons and particles of species s;

is the total frequency of collisions between electrons and heavy particles;

are the cross sections for electron—atom, electron—ion, and electron—electron inter-
actions;

is the relative velocity;

is the parallel (or "ordinary") electrical conductivity;

is the normal (or transverse) electrical conductivity;

non- Lorentzian electrical conductivity
Lorentzian electrical conductivity

Y=

non-Lorentzian thermal conductivity
Lorentzian thermal conductivity

‘VT =

are the transport coefficients;
is the nonequilibrium Debye length;
is the scattering angile,

LITERATURE CITED

1. H. Grad, "Theory of rarefied gases," in: Rarefied Gas Dynamics (ed. F. M. Devienne), Pergamon,
New York—London (1960).

ooqca.cnvhwm
HeonEA

. F. Morse, Phys. Fluids, 6, No. 10 (1963).

. A, Johnson, Phys, Fluids, 16, No. 1 (1973).

. L. Bhatnagar, E. P, Gross, and M. Krook, Phys. Rev., 94, No. 3, 511 (1954).

. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics, McGraw—Hill, New York (1965).
. Spitzer, Jr., and R. Harm, Phys. Rev., 89, 977 (1953).

. S. Devoto, Phys. Fluids, 10, No. 2 (1967).
M. S. Sodha and Y. P. Varshni, Phys. Rev., 111, 1203-1205 (1958); "Dependence of electron mo-

bility on magnetic field in a fully jonized gas, " Phys. Rev., 114, 946-947 (1959).
9. R. Landshoff, Phys. Rev., 76, 904 (1949).
10. A. Eucken, Physik Z., 14, 324 (1913); M. N. Kogan, Rarefied Gas Dynamics, Plenum, New York
(1969), p. 2186.
11. J.-P. Petit, Journal de Mécanique, 11, No, 2, 233 (1972).
12. M. N. Kogan, Rarefied Gas Dynamics (Kinetic Theory) [in Russian], Nauka, Moscow (1967).
13. S. Chapman and T. G. Cowling, Mathematical Theory of Nonuniform Gases, Cambridge Univ, Press

(1953).

14, C. Cercignani, Mathematical Methods in Kinetic Theory, Macmillan, New York (1969),
15, T. F. Morse, Phys. Fluds, 7, No. 2, 159-169 (1964).
16. R. M. Chmielski and J. H. Ferziger, Phys, Fluids, 10, No. 2 (1967).

652



